

New Drill Target Takes Shape at High-Grade Nickel Prospect

Highlights

Solstice Minerals Limited (Solstice or the Company) is pleased to announce that detailed compilation and interpretation at the **GSP Prospect (GSP**) within its 100% owned **Ringlock Dam Nickel Project** in the Eastern Goldfields of Western Australia has identified a promising area for drill testing:

- GSP mineralised ultramafic flows and associated remobilised footwall hosted massive nickel sulphide occurrences are interpreted to plunge moderately to the south toward a cross-cutting fault ('Owen Fault')
- A potential high-value, down-plunge exploration target area is seen on the southeast side of the Owen Fault, in an untested 'panel' of footwall contact at the extension of the GSP plunge orientation
- Drilling in the target area is sparce, with only three effective pierce points into the westernmost (ie footwall) ultramafic contact, all located above the proposed plunge target and including a historical drillhole¹ containing locally elevated coincident nickel (4700ppm) and copper (400ppm) geochemistry
- GSP is a high-tenor magmatic nickel sulphide system with recent vein results² to 1.81m @ 18.1% nickel, 19.06g/t palladium 2.22g/t platinum, and 2.21g/t gold
- Solstice's drilling has highlighted the need for further exploration into down-plunge and along strike positions, with an exploration prize being an intact Kambalda or Silver Swan style high-grade massive sulphide accumulation in the GSP channelised flow corridor
- Shallow reverse circulation (RC) drilling is planned to firm-up the orientation of the prospective footwall contact, ahead of possible targeted diamond drilling and down-hole electromagnetic (EM) survey

Solstice Minerals' Chief Executive Officer and Managing Director, Mr Nick Castleden said:

"Through a compilation of work at the main GSP drill area, various lines of evidence have emerged indicating that exploration should head southward and down-plunge, towards a panel of ultramafic geology on the southern side of the Owen Fault where there is surprisingly little drill information about the most prospective footwall ultramafic flow. There are only a couple of holes testing the footwall panel, and encouragingly an old (circa 1972) percussion hole logs coincident nickel and copper geochemistry in a talc-carbonate ultramafic. We see an exciting target below this hole in a position in line with the GSP plunge. The most efficient way to test this zone will be via shallow RC drilling to constrain the orientation of the footwall contact, followed by targeted diamond drilling and down-hole electromagnetic (EM) surveys".

¹ Refer to Geological Survey of Western Australia Open File Report A4350, percussion drillhole GS052

² Refer to GSPDD0005 in ASX: SLS 10 March 2023 (High Grade Nickel Sulphide Drill Results at GSP Prospect) and ASX: SLS 31 March 2023 (High Grade Platinum and Palladium in Nickel Sulphides at GSP Prospect)

GSP Geological Interpretation

The **GSP Prospect (GSP)** is located within the Ringlock Dam Nickel Project area, approximately 65km north of Kalgoorlie (Figure 1), and was discovered during the 1970s nickel exploration boom and has seen several phases of exploration since. The Prospect is located approximately 30km northwest of the high-grade **Silver Swan** massive nickel sulphide deposit (*historical underground production 2.7Mt* @ 5.1% Ni for 137.5kt Ni – refer to ASX: POS) and is hosted by the interpreted strike extension of the same Black Swan Komatiite Complex.

Past drilling at GSP has identified disseminated magmatic sulphide mineralisation in channelised ultramafic flows, as well as stringer and vein style accumulation along and below the key prospective basal/footwall contact.

Figure 1: Location map of the Ringlock Dam Nickel Project (E29/1087), ultramafic belts and aeromagnetic imagery

Following the receipt of strong high-tenor nickel, platinum, and gold assays from Solstice's 2023 diamond drilling campaign at GSP (see ASX: SLS 10 March 2023 "High Grade Nickel Sulphide Drill Results at GSP Prospect", and 31 March 2023 "High Grade Platinum and Palladium in Nickel Sulphides at GSP Prospect") the Company has carried out detailed cross section and long-section compilation and interpretation to guide follow-up work.

The compilation program has revealed evidence that the mineralised ultramafic flows and associated remobilised footwall massive nickel sulphide occurrences form an overlapping channel

of mineralisation that plunges moderately to grid south (Figure 2) toward a local N-S trending fault ('Owen Fault' or 'Fault') and associated cross-cutting porphyry intrusions (Figure 3).

When examining the long-section view, the Fault is interpreted as a boundary separating the GSP footwall ultramafic contact from a fault-offset panel of equivalent footwall ultramafic contact to the south. Importantly the previous drilling into this southern panel remains very sparce, with only three holes interpreted to have pierced the footwall contact, and there has been no drilling undertaken to test the proposed GSP plunge target (Figure 2).

Significantly, a historical percussion hole³ (GS0052) drilled a talc-carbonate altered westernmost (ie footwall) ultramafic flow with coincident elevated nickel (4700ppm) and copper (400ppm) over a 5' (1.52m) interval. These values are consistent with disseminated nickel sulphides and there has been no further drill testing conducted on this flow extending at least 150m to the north and for 300m to the south.

Figure 2: Long-section view of GSP footwall contact looking grid west (magnetic SW) showing mineralised footwall contact pierce points, footwall vein pierce points, and overlying area of disseminated sulphides that together form an overlapping corridor plunging south to the Owen Fault. The continuation of the mineralised corridor into the southern panel of ultramafic presents a high-value exploration target.

The Company considers that the southern offset continuation of the GSP mineralised channel, particularly into the area below GS0052, represents a highly promising exploration opportunity that demands further drill-testing.

³ Refer to Geological Survey of Western Australia Open File Report A4350

Next steps

Solstice's improved geological understanding and detailed interpretation of the geometry of the footwall surface and of disseminated sulphide bearing flows have highlighted the potential at depth in an under-explored panel of ultramafic flows on the south side of the Owen Fault.

Figure 3: Simplified geology of the GSP Prospect and southern extension on the far side of the Owen Fault corridor. The GSP channelised (thickened) footwall ultramafic is interpreted to plunge below the southern panel of footwall ultramafic. Note limited drilling in the target area.

In order to design efficient drill testing of the interpreted GSP plunge corridor, the Company is designing shallow RC drilling to firm-up the orientation and chemistry of the westernmost ultramafic flows. On completion of this work, Solstice will proceed with diamond drilling, which potentially designed as a down-hole EM platform hole to provide a maximum length of EM coverage through the prospective corridor.

The Company will continue to update shareholders as these programs progress.

About Ringlock Dam and GSP

Details of the 2022/2023 drill program have been provided in previous Solstice ASX announcements dated 2 December 2022 "Commencement of Nickel Drilling at Ringlock Dam, Eastern Goldfields", 19 December 2022 "Massive Sulphide Intersected in Nickel Drilling at GSP Prospect, Ringlock Dam", 10 March 2023 "High Grade Nickel Sulphide Drill Results at GSP Prospect" and 31 March 2023 "High Grade Platinum and Palladium in Nickel Sulphides at GSP Prospect", and 14 March 2022 "Prospectus".

Within the GSP Prospect, mineralised nickel sulphides sit at footwall contacts, or as veins and stringers within footwall rocks just below the basal contact that are interpreted to represent the remobilisation of an earlier sheet of massive sulphides into present-day structural positions.

All six of Solstice's diamond holes drilled to date hit nickel mineralised veins or stringers at or just within the basal footwall contact (Table 1), and include **1.81m @ 18.1% nickel, 19.06g/t palladium 2.22g/t platinum, and 2.21g/t gold** in GSPDD005 (Figure 4). These support similar intercepts in historical drilling results that include:

- 8.01m @ 2.4% Ni from 113.39m (incl. 1.52m @ 6.8% Ni from 113.39m) in GS033;
- 2.86m @ 2.9% Ni from 166m (incl. 2.13m @ 3.5% Ni from 166.73m) in GS013;
- 4.0m @ 2.3% Ni from 104m in MJRC047; and
- 4.0m @ 1.4% Ni from 145m in MJRC048.

The broader Project area covers more than 10km of soil-covered strike of highly prospective Silver Swan-Black Swan ultramafic belt, and hosts additional targets beyond GSP, including around open disseminated sulphide intercepts at the Ringlock Prospect⁴. These targets will continue to be worked up and ranked.

Figure 4: Core photo showing sample intervals through massive sulphides in GSPDD0005. The combined intercept is 18.1% Ni, 19.06g/t Pd, 2.22g/t Pt and 2.21g/t Au

⁴ Refer to ASX: SLS 14 March 2022 (Prospectus).

	>1% Ni Sulphides (min. 0.3m @ 1.0% Ni, NIL internal waste)					Dissem. Sulphides (min. 5m @ 0.4% Ni, 2m internal waste)								
Hole ID	From	То	Interval	Ni (%)	Pd ppm	Pt ppm	Au ppm	From	То	Interval	Ni (%)	Pd ppm	Pt ppm	Au ppm
GSPDD0001	141	143.22	2.22	2.27	0.38	0.15	0.10							
GSPDD0001								223	244	21	0.48	0.07	0.03	0.02
GSPDD0002								5	14	9	0.49	0.08	0.06	<0.01
GSPDD0002								76	82	6	0.52	0.11	0.05	0.02
GSPDD0002	99.63	100.32	0.69	1.84	0.26	0.26	0.01							
GSPDD0003	42.79	43.45	0.66	1.26	<0.01	<0.01	<0.01							
GSPDD0003								154	160	6	0.49	0.06	0.03	0.01
GSPDD0003								169	175	6	0.57	0.07	0.03	0.01
GSPDD0003	178	179.56	1.56	1.16	0.27	0.11	0.03							
GSPDD0004								128	133	5	0.57	0.07	0.03	0.01
GSPDD0004								141	146	5	0.44	0.05	0.02	0.01
GSPDD0004	229	229.42	0.42	1.48	0.15	0.06	0.01							
GSPDD0005	101.85	103.66	1.81	18.1	19.06	2.22	2.21							
GSPDD0005	105.85	106.22	0.37	7.89	3.23	1.76	0.72							
GSPDD0005	161.85	162.44	0.59	1.3	0.09	0.05	0.04	143	162.44	19.44	0.49	0.1	0.05	0.03
GSPDD0006								202	218	16	0.50	0.12	0.06	0.08
GSPDD0006	212	213	1	1.12	0.16	0.05	0.08							
GSPDD0006	221	222	1	1.12	0.29	0.16	0.26							

Table 1: Significant Solstice Diamond Drill Results including PGE and gold assays

Reported on a 0.4% Ni cut, minimum 5m width and <2m units of internal dilution; including high grade intervals reported on a 1% Ni cut, minimum 0.3m interval, and no internal dilution.

Refer to Appendix 1 (JORC Table) for further information.

This announcement has been authorised for release by the Board.

For further information please contact:

Nick Castleden

CEO & Managing Director T: +61 (8) 9200 1838

ABOUT SOLSTICE MINERALS LIMITED

Solstice is a minerals exploration company with gold and base metal projects in the Eastern Goldfields of Western Australia. Solstice has been listed on the Australian Securities Exchange since 2 May 2022 and trades under the code 'SLS'. The company is well funded with no debt. Solstice's key projects are the extensive Yarri gold project (which includes the advanced Hobbes gold Prospect), Ringlock Dam and the Ponton early-stage gold project.

Forward-Looking Statements

This announcement may contain certain forward-looking statements, guidance, forecasts, estimates, prospects, projections or statements in relation to future matters that may involve risks or uncertainties and may involve significant items of subjective judgement and assumptions of future events that may or may not eventuate (**Forward-Looking Statements**). Forward-Looking Statements can generally be identified by the use of forward-looking words such as "anticipate", "estimates", "will", "should", "could", "may", "expects", "plans", "forecast", "target" or similar expressions and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production and expected costs. Indications of, and guidance on future earnings, cash flows, costs, financial position and performance are also Forward-Looking Statements.

Persons reading this announcement are cautioned that such statements are only predictions, and that actual future results or performance may be materially different. Forward-Looking Statements, opinions and estimates included in this announcement are based on assumptions and contingencies which are subject to change, without notice, as are statements about market and industry trends, which are based on interpretation of current market conditions. Forward-Looking Statements are provided as a general guide only and should not be relied on as a guarantee of future performance.

No representation or warranty, express or implied, is made by Solstice that any Forward-Looking Statement will be achieved or proved to be correct. Further, Solstice disclaims any intent or obligation to update or revise any Forward-Looking Statement whether as a result of new information, estimates or options, future events or results or otherwise, unless required to do so by law.

Compliance Statement

The information in this release that relates to Exploration Results is based on and fairly represents information and supporting documentation prepared by Mr John McIntyre, a competent person who is a Member of the Australian Institute of Geoscientists. Mr McIntyre is an employee of Solstice Minerals Limited. Mr McIntyre has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr McIntyre consents to the inclusion in this release of the new Exploration Results in the form and context in which they appear.

No new Exploration Results are presented. The information in this announcement that relates to previous Exploration Results is extracted from the ASX announcements 2 December 2022 "Commencement of Nickel Drilling at Ringlock Dam, Eastern Goldfields", 19 December 2022 "Massive Sulphide Intersected in Nickel Drilling at GSP Prospect, Ringlock Dam", 10 March 2023 "High Grade Nickel Sulphide Drill Results at GSP Prospect" and 31 March "High Grade Platinum and Palladium in Nickel Sulphides at GSP Prospect", and in the Company's Prospectus dated 14 March 2022, which are available at <u>www.solsticeminerals.com.au</u>. Solstice confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Exploration Results in the original announcement continue to apply and have not materially changed. Solstice confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original announcement.

APPENDIX 1: JORC Code Table 1

Section 1: Sampling Techniques and Data

1	Critaria in	Ahio a	sootion.	amply to		n aaatiana)	۰.
I	Criteria in	this s	section		all succeeding	a sections	
1						<i>j</i> eeenene,	/

Criteria	Explanation	Comments
Sampling	Nature and quality of sampling	Historical Drilling Samples
techniques	(e.g. cut channels, random chips,	Previous operators of the Ringlock Dam E29/1087 have drilled using Rotary
-	or specific specialised industry	Air Blast (RAB), Aircore (AC), Reverse Circulation (RC) and Diamond Drilling
	standard measurement tools	(DD).
	appropriate to the minerals under	
	investigation such as down hole	Drilling has been completed over a number of programs and varied
aamma sondes, or handheld XRF		snarings. Sampling is assumed to have been via conventional industry
	instruments etc.) These	standards i.e. snear sampling for RAB 1/8 riffle solitting for RC and half or
	examples should not be taken as	guarter core for DD
	limiting the bread meaning of	
	sumpling.	
	lackede veference to verence	Unterined Duilling Convolue
	include reference to measures	Historical Drilling Samples
	taken to ensure sample	Measures taken by the previous operators to ensure sample representivity
	representivity and the	are unknown but are assumed to have been via conventional industry
	appropriate calibration of any	standards for the time.
	measurement tools or systems	
	used.	
	Aspects of the determination of	Historical Drilling Samples
	mineralisation that are Material	Drilling derived samples by previous operators were collected at various
	to the Public Report. In cases	intervals generally ranging between 2.0m–6.0m for percussion drilling (RC.
	where 'industry standard' work	Aircore, and RAB), and composited intervals of variable length governed by
	has been done this would be	geology in Diamond drill holes.
	relatively simple (e.a. 'reverse	
	circulation drilling was used to	Assaving was conducted by recognised assay laboratories, although
	ohtain 1 m samples from which 3	information about assay procedures is not consistently provided by the
	ka was nulverised to produce a 30	nrevious operators' reports
	a charge for fire assay') In other	
	g charge joi jile assay j. In other	Only PC and DD holes have typically been dewenhole surveyed by provious
	required such as where there is	onerators
	required, such as where there is	operators.
	coarse gola that has innerent	
	sampling problems. Unusual	
	commonities or mineralisation	
	types (e.g. submarine nodules)	
	may warrant disclosure of	
	detailed information.	
Drilling	Drill type (e.g. core, reverse	Historical Drilling Samples
techniques	circulation, open-hole hammer,	Within the Exploration Licence area (E29/1087) there has been a total of
	rotary air blast, auger, Bangka,	656 holes totalling 57,652m of drilling reported in Open File reports. This
	sonic, etc.) and details (e.g. core	includes Rotary Air Blast (RAB), 120 holes for 4,387m, Aircore (AC), 183
	diameter, triple or standard tube,	holes for 7,217m, Reverse Circulation (RC), 238 holes for 21,538m and
	depth of diamond tails, face-	Diamond (DD) 114 holes for 24,459.9m. One water bore is recorded with a
	sampling bit or other type,	50m depth.
	whether core is oriented and if so,	
	by what method, etc.).	The AC drill hole depths range from 9m to 78m, with an average depth of
		39m. The RAB drill hole depths range from 5m to 72m, with an average
		depth of 36m. The RC drill hole depths range from 1.0m to 304.8m, with an
		average depth of 90m. The DD drill hole depths range from 44m to 499.7m,
		with an average depth of 214m.
Drill sample	Method of recording and	Historical Drilling Samples
recovery	assessing core and chip sample	Sample recoveries during the historical drilling processes are unknown.
	recoveries and results assessed.	
	Measures taken to maximise	Historical Drilling Samples
	sample recovery and ensure	Measures taken by previous operators during drilling process to maximise
		recovery and representativity are unknown. However, it is assumed

Criteria	Explanation	Comments						
	representative nature of the	measures were consistent for the phase of exploration and standard						
	samples.	practices at the time.						
	Whether a relationship exists	Historical Drilling Samples						
	between sample recovery and	No sample bias has been observed in reports reviewed by Solstice and in the						
	grade and whether sample bias	database created by the Company.						
	may have occurred due to							
	preferential loss/gain of							
	fine/coarse material.							
Logging	Whether core and chip samples	Historical Drilling Samples						
	nave been geologically and	Drill core and chip samples have been geologically logged by previous						
	geotechnically logged to a level of	operators and recorded in paper copy reports or digitally captured. Data is						
	Mineral Resource estimation	not currently at a level of detail to support Milleral Resource estimation.						
	mining studies and metallurgical							
	studies							
	Whather logging is qualitative or	Historical Drilling Samples						
	quantitative in pature. Core (or	Historical drill sample logging was primarily qualitative. No historical core						
	costean channel etc.)	nhotography has been located						
	photography							
	The total length and percentage	Historical Drilling Samplas						
	of the relevant intersections	The majority of the drill sample intervals annear based on reports to have						
	logaed.	been logged in full.						
Sub-	If core, whether cut or sawn and	Historical Drilling Samples						
sampling	whether quarter, half or all core	Specific sampling methods for core by previous operators are not reported						
techniques	taken.	and thus unknown, however, it is assumed that core was cut with either						
and sample		quarter or half core samples or sampled consistent with the methodology of						
preparation		the period.						
	If non-core, whether riffled, tube	Historical Drilling Samples						
	sampled, rotary split, etc. and	RC sampling is assumed to have been collected on the rig using riffle						
	whether sampled wet or dry.	splitters or cone splitters. No information is available on sample moisture.						
	For all sample types, the nature,	Historical Drilling Samples						
	the sample propriation	The sample preparation techniques used by previous operators is unknown,						
	the sample preparation	nowever, it is assumed to have been appropriate for the phase of						
	Quality control procedures	Historical Drilling Samples						
	adonted for all sub-sampling	Specific OA/OC procedures adopted by previous operators are unknown						
	stages to maximise representivity							
	of samples.							
	Measures taken to ensure that	Historical Drilling Samples						
	the sampling is representative of	Measures taken historically to ensure that the sampling is representative of						
	the in-situ material collected,	the in-situ material collected is poorly documented in reports.						
	including for instance results for							
	field duplicate/second-half							
	sampling.							
	Whether sample sizes are	Historical Drilling Samples						
	appropriate to the grain size of	Sample sizes are not documented but are assumed appropriate for the rock						
	the material being samplea.	type and style of mineralisation.						
Quality of	The nature, quality and	Historical Drilling Samples						
assay data	appropriateness of the assaying	Information presented in reports since the mid-1990s indicates independent						
and	and laboratory procedures used	accredited laboratories including Analabs and ALS-Chemex were used for						
laboratory	and whether the technique is	sample analyses. Mixed acid digests on 50g aliquots were used with ICP-OES						
tests	consiaerea partial or total.	Tinish. The technique is considered a total digest and is an appropriate assay						
		l imited or no information is presented in reports about the laboratories and						
		assay methods for samples collected prior to the 1990s. The G&S						
		Exploration Pty Ltd work in the early 1970s indicates assay methods were by						
		AAS (hydrofluoric acid fusion).						

Criteria	Explanation	Comments							
	For geophysical tools,	Historical D	Drilling Sa	nples					
	spectrometers, handheld XRF	No geophy:	sical, spec	trometer or ha	andheld XRF ins	struments are	believed to		
	instruments, etc., the parameters	have been	used to de	etermine any e	element concen	trations relate	ed to		
	used in determining the analysis	historical sa	ample dat	a.					
	including instrument make and								
	model, reading times, calibrations								
	factors applied and their								
	derivation. etc.								
	Nature of auality control	Historical [Drilling Sa	mples					
	procedures adopted (e.a.	Informatio	n about sc	ecific OA/OC	procedures or p	protocols for h	istorical drill		
	standards, blanks, duplicates,	samples co	llected by	previous oper	ators is unknow	vn.			
	external laboratory checks) and	sumples se		premete oper					
	whether accentable levels of								
	accuracy (i.e. lack of hias) and								
	nrecision have been established								
Verification	The verification of significant	Historical)rilling Sa	mnles					
of sampling	intersections by either	An indeper	dent data	hase consulta	nt and internal	technical ners	onnel at		
and	independent or alternative	Solstico ba		significant his	torical drill inte	reconts based			
accavina		data contai	ve vermeu	o Opon Eilo ro	norte	ercepts based	on assay		
ussuying	The use of twineed holes				ports.				
	rne use oj twinnea noles.		have been	npies	historical res	rt data ta insti			
		No records	nave bee	n round in the	nistorical repoi	rt data to indic	cate twin		
	De sus estation of a size and data	nole drilling		i undertaken.					
	Documentation of primary data,	Historical L	Jrilling Sal	npies	مريد معالية المع		na hava		
	data entry procedures, data	Depending	on the ag	e of the histor	ical drilling, pre	vious operato	rs nave		
	verification, aata storage	collected data either in paper form or electronically.							
	(physical and electronic) protocols	The data is	compiled	from cumplind	data and data	outroated from	n tha		
			complied	from supplied			n une d validatad		
		western Al	Jstrallan g	overnment mi	ineral database	(WAIVIEX), an	d validated		
		by indepen	dent data	management	company, Geol	base Australia	Pty Ltd. The		
		subsequent	t complied	a dataset is exp	ported into app	ropriate form	ats for use		
	Discuss and adjustment to seem	by the Com	ipany.						
	data	No adjuster	onte wor	npies mada ta any	laboratory	w data cupplic	d to the		
	<i>data.</i>	No adjustr	ients were	e made to any	laboratory assa	iy data supplie	ed to the		
		Company d		a from the we	estern Australia	in government	. mineral		
I continu of	A source and sugliture formers		WAIVIEA).						
Location of	Accuracy and quality of surveys	Historical L	prilling Sal	npies drill collors no	at the year 200	0 has been re	orded using		
aata points	and down halo surveys) transhas	The locatio		of an unknow	st the year 200	io has been rei	E to 10m		
	unu uown-noie surveys), trenches,	a nanuneiu	GPS unit		n accuracy. An a	is activated	-5 to 10m,		
	mine workings and other	dependent	on the ag	e of the survey	y and GPS used	, is estimated	for the		
	locations used in Mineral		llar coord	inates. Prior to	the year 2000	the type of m	ethods used		
	Resource estimation.	to survey th	ne historic	al noie collars	is unknown bu	t is assumed t	о ве ву		
		traditional	cadastral	surveys by lice	insed surveyors				
		Of the 12 P	C holos dr	illod by Magm	n Motals in 200)7 into the CSI	Derocoact		
		10 undorw	ont gurace	ineu by Magin	a wetais in 200	Surtron Tochn	elogios Tho		
		downholo	ent gyrust	a for MIRCOAR	e surveying by .	is noted in rec	orts to bo		
		unreliable	Survey uat			is noted in rep			
	Specification of the arid system	Historical [)rilling Sa	mnles					
	used		al drill coo	rdinate data is	reported here	using the grid	system		
	uscu.	MGA94 70	ne 51 Sout	h		using the griu	System		
		Some histo	rical data	was collected	using the Red F	Dam local Grid	. The control		
		points for w	which are	as follows:					
		Local Grid	4	AGD84 751		GDA94 751			
		y 2000 Grid	- v	Fast	North	Fast	North		
		11000	24200	245204.04		245424 70			
		11400	24200	343284.94		545421.70			
		11400	9800	353997.68	0054973.67	354134.48	0055131.42		

Criteria	Explanation	Comments
	Quality and adequacy of	Historical Drilling Samples
	topographic control.	Topographic relief in the licence areas is relatively flat with very little
		elevation change in the areas drilled or sampled. The quality of topographic
		control is unknown but is assumed to be adequate.
Data	Data spacing for reporting of	Historical Drilling Samples
spacing	Exploration Results.	Historical drilling has been conducted with various drill spacings.
and		Reconnaissance drilling was undertaken on 200 - 400m spaced drill lines,
aistribution		with infill over prospective zones to 100m between lines and hole stations
		at 50m. In the GSP Prospect area some noise are spaced between 15-25m
	14/h ath au th a data an acian and	apart on griu lines spaced som apart.
	distribution is sufficient to	The data spacing distribution and geological understanding of
	establish the degree of geological	mineralisation is not currently sufficient for the estimation of Mineral
	and arade continuity appropriate	Resources
	for the Mineral Resource and Ore	
	Reserve estimation procedure(s)	
	and classifications applied.	
	Whether sample compositing has	Historical Drilling Samples
	been applied.	It is unknown whether previous operators applied any sample compositing
		beyond the primary composite sample lengths presented in the data
		supplied or extracted from online sources.
Orientation	Whether the orientation of	Historical Drilling Samples
of data in	sampling achieves unbiased	The orientation of historical drilling and sampling is considered appropriate
relation to	sampling of possible structures	for the mineralisation style and nature of geological rock units.
geological	and the extent to which this is	
structure	known, considering the deposit	
	type.	Historical Duilling Complex
	If the relationship between the	Historical Drilling Samples
	orientation of key mineralised	this point
	structures is considered to have	
	introduced a sampling higs this	
	should be assessed and reported	
	if material.	
Sample	- The measures taken to ensure	Historical Drilling Samples
security	sample security.	No information on sample security has been historically reported and no
,		potential problem has been identified by Solstice.
Audits or	The results of any audits or	Historical Drilling Samples
reviews	reviews of sampling techniques	The Company's review of sampling techniques and laboratory assay type
	and data.	and methods included in reports post the year 2000 appears to have been
		conducted to industry standards applicable at the time of drilling. Older
		data is assumed to conform to industry standard sampling techniques for
		collection of data for that period.

Section 2: Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and	Ringlock Dam Licence E29/1087 is held 100% by GreenCorp Metals Pty Ltd and GreenCorp is a 100% owned subsidiary of Solstice Minerals Ltd. GreenCorp also holds 100% legal and beneficial rights over the contiguous Goongarie Exploration Licence E29/1115.

ASX Announcement 29 June 2023

Criteria	JORC Code explanation	Commentary
	environmental settings.	
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to	Licence E29/1087 was granted on 06 September 2021 so is in its first 5-year term. Licence E29/1115 was granted 12 May 2022 and is in its first 5-year term. Solstice knows of no reason why a licence to operate would not be granted or would ever be revoked.
	operate in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Historical Drilling Samples Exploration Licences E29/1087 and E29/1115 have had long exploration histories with reported exploration dating back to the late 1960s and early 1970s. Previous exploration within the tenement area has included the following companies, with periods known included: Group Exploration Ltd & Sumitomo JV (1967-73) Westralian Nickel NL (1969) Abminco & International Nickel (1974-77) Centaur Mining & Exploration (1997) Magma Metals (2006–2009) Kennecott Explorations (Australia) (1971-73) Western Mining Corporation (1976-77; 1985-87) AUR NL (1989-90) Great Boulder Mines (1971-76) Mining Project Investors [Fodina Minerals Pty Ltd] (1996-97) Nickelore (2009) Western Areas (2000–2004) North Exploration (1999–2000)
		Capital Mining (2018)
Geology	Deposit type, geological setting and style of mineralisation.	The Ringlock Dam Licence and Goongarie Licence areas (E29/1087 and E29/1115, respectively) are located within the Archaean Yilgarn Block and in the Kalgoorlie Terrane. They are both highly prospective for 'Kambalda type' komatiitic nickel ore deposits. The komatiitic class of magmatic <u>nickel</u> sulphide <u>ore</u> deposits are associated with processes of <u>komatiite</u> volcanology that concentrate and enrich a Fe-Ni-Cu-(PGE) sulphide melt within the <u>lava</u> flow environment of an erupting komatiite <u>volcano</u> .
		Komatiitic ultramafic rocks have been identified in drilling and nickel sulphide mineralisation has been intersected within historical holes in the Licence areas, particularly at GSP and Ringlock Prospects.
		The Ringlock Dam and Goongarrie Licences are located in areas with geologically similar rock types and structural settings to numerous gold deposits in the Coolgardie Mineral Field. Therefore, the Exploration Licences are also considered prospective for gold mineralisation.

Criteria	JORC Code explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Historical Drilling Samples A complete summary of drilling data is included in ASX release "Commencement of Nickel Drilling at Ringlock Dam, Eastern Goldfields" (2 December 2022).
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar din and azimuth of 	
	the hole • down hole length and interception depth • hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Historical Drilling Samples Not applicable.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Historical Drilling Samples Significant intercepts are reported at minimum 5m at 0.4% Ni with intervals of <2m of internal waste, and minimum 0.3m @ 1.0% Ni with no internal waste. No upper cut-off grades are applied to aggregations.
	Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Historical Drilling Samples Average grades of significant intercepts are a length-weighted calculation.
	The assumptions used for any reporting of metal equivalent	Historical Drilling Samples No metal equivalents are applied.

Criteria	JORC Code explanation	Commentary
	values should be clearly stated.	
Relationship between mineralisatio n widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not	Historical Drilling Samples Significant intercepts reported are downhole lengths only as there is insufficient information available to confirm the orientation of mineralisation. The true width of mineralisation is not known.
Diagrams	known'). Appropriate maps and sections (with scales)	Historical Drilling Samples Refer to Figures in the body of text for hole locations.
	and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Historical Drilling Samples All drill holes are reported in ASX release "Commencement of Nickel Drilling at Ringlock Dam, Eastern Goldfields" (2 December 2022).
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious	In March 2006 a thorough review of existing geophysical datasets was undertaken by Mr Bill Amman of Newexco Services Pty Ltd. The review aimed to identify unexplained anomalies and additional targets based upon the geophysical coverage at the time while highlighting areas worthy of consideration for future geophysical exploration. With the exception of Mt Jewell, all prospects demonstrated the need for further electromagnetic (EM) surveys and/or drilling based upon the current geophysical coverage. An extensive Moving Loop Electromagnetic (MLEM) geophysical survey was undertaken in 2006 within E29/1087 with 29 nickel sulphide mineralisation targets defined. Also, Dr Walter Witt of The Walter Witt Experience (WWE) undertook a significant data review and exploration target generation exercise in 2006 defining 18 nickel sulphide mineralisation targets, prioritized 1 to 3. Solstice is not aware of how many of these MLEM and WWE targets have been followed- up with drilling. Six large SQUID (Superconducting Quantum Interference Device) FLTEM (Fixed Loop Transient Electromagnetics) surveys were completed at the Bojangles,

Criteria	JORC Code explanation	Commentary										
	or contaminating substances.	Ringlock and Red Dam prospects during October and November 2009 by Outer- Rim Exploration Services on behalf of Magma Metals Limited. All data was acquired with a LANDTEM High-Temperature (HT) SQUID receiver sensor working at base frequencies of 0.83Hz and 0.25Hz. Down Hole Electromagnetic (DHEM) surveys have been undertaken on MJD014, MJD015, MJD016, MJD017, MJD018, MJD019. DHEM surveys were carried out down holes GSPDD003 to GSPDD006 of the Solstice 2022 program with results tabulated by Newexco Exploration Pty Ltd below:										
		Plate Name	x	у	z	Dip	Dip_ Direction	Rotation	Length	Depth_ Extent	Conductivity-	
		OVB_ early times	351294.9	6659842	402	0	230.79	0.07	4050	675	11	
		Background_	351664	6659423	193	69.13	65.45	0	1500	750	460	
		GSPDD0004_ Mistime	351294.7	6659713	302	65.89	53.72	0	500	500	60	
		GSPDD0004_247m	351105.2	6659716	210	80.2	67.8	0	15	15	600	
		GSPDD0005_110m	351178.8	6659696	320	41.1	79.7	0	16.6	15	500	
		GSPDD0005_130m	351172.2	6659685	315	65.89	73.43	0	18.5	14.3	196	
		GSPDD0005_102m	351183.4	6659689	333	83.98	60.29	0	9.7	6.2	380	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and	Solstice has u E29/1087. Da incorporated Diamond and evaluate dow at GSP Prosp Prospect. The explore for o	inderta ata only into th I RC Dri vn-plun ect sou e drillho ff-hole	ken a c v availa le Com lling pr ge con th of th oles wil conduc	comp ble c pany ogra tinui he Ov I also ttor	orehe on pa i's da ams a ty of wen f o pro targe	nsive rep per rep tabase t re planı the prir Fault an vide pla ts at bo	eview o orts wil to supp ned to l mary ni d EM g tforms th pros	f the c l be ex ort ev be und ckel su ckel su eophy for ne pects.	digital xtracte valuati dertak ulphide vsical t ew DH	data availa ed and on. en by Sols e mineralia argets at F EM survey	able for tice to sation Ringlock is to
	future drilling areas, provided this information is not commercially sensitive.											